Доход по облигациям с фиксированным купоном складывается из периодических купонных выплат и выплаты номинальной стоимости в конце срока. Доходы по купонам выплачиваются, как правило, один или два раза в год.
Таким образом, современная стоимость облигации с фиксированным купоном складывается из современной стоимости аннуитета и современной стоимости номинала. Если выплаты купонов происходят ежегодно (один раз в год), то рыночная цена облигации равна:
(29)
Где С - годовой купонный доход (в рублях)
N - номинал облигации (в рублях)
i- доходность к погашению или ставка дисконтирования.
Соотношения (29) связывают стоимость облигации или курс с доходностью к погашению. Если известна доходность i, то стоимость (или курс) - можно определить с помощью соотношения (29). Обратная задача - определение доходности по курсу - в общем виде аналитически неразрешима. Поэтому доходность к погашению облигаций с фиксированным купоном находят с помощью численного решения уравнения (29).