При расчетах часто используют простую процентную ставку доходности для облигаций с фиксированным купоном. Напомним, что при начислении дохода по простой процентной ставке, доход каждый раз начисляется на первоначальную сумму, т.е. предполагается, что промежуточные доходы по процентам не реинвестируются (можно считать, что все купонные доходы получены в конце срока). Поэтому можно записать:
∙(1 + n∙ inp) = N+n∙Ct (31)
откуда можно получить:
(32)
В числителе (32) - доход, полученный владельцем за весь период владения облигаций. Разделив доход на цену облигации, получим доходность за весь срок. Если теперь разделить последнюю доходность на срок n, то получится годовая доходность облигации.
Простая доходность inp , если облигация куплена по номиналу (К=100). В этом случае i = inp = it = g. Так же i = inp, если срок облигации равен одному году (n = 1). Если срок облигации равен нескольким годам, то пользуются так же другой приближенной формулой:
(33)
Соотношение (33) отличается от (32) тем, что в (32) в знаменателе фигурирует не цена облигации, а средняя арифметическая между начальной ценой облигации P и конечной ценой N.
Пример 17
Срок облигации с фиксированным купоном равен 7 годам. Купонный доход выплачивается ежегодно по норме 12 % от номинала в год. Найти курс облигации, если ставка дисконтирования равна 16%.
Решение
Пример 18
Годовой купонный доход облигации равен 240 руб., купонный доход выплачивается 2 раз в год, номинал облигации равен 1 300 руб., срок до погашения 6 лет. Найти цену облигации, если доходность к погашению (номинальная процентная ставка при условии начисления процентов 2 раза в год) равна 14,47%.
Решение
Согласно (30) цена облигации равна:
руб.
Пример 19
Облигация с фиксированным купоном, равным 20% от номинала и выплачиваемым ежегодно, куплена по курсу 90. Срок облигации - 10 лет. Найти простую доходность и доходность по приближенной формуле (33).
Решение
или inp= 23,33%
или ΐ = 22,11%
Численное решение уравнения (29) приводит к следующему значению для доходности по сложной ставке: i = 22.6%/ В данном случае лучшим приближением для i является доходность ΐ, рассчитанная по приближенной формуле (33).
8. Чистая и грязная цена облигации